

COLD SPRAYING IN MOTION

Video

COLD SPRAYING IN MOTION

[mm]

[g/s]

[mm]

Velocity of particle

Motion speed of the nozzle

Volume spray rate

Area velocity

Thickness

Feedrate

Spot diameter

...

[m/s]

[mm/s]

[mm³/s]

[mm²/s]

Ekin vs. Temperature

Formula: Kinetic Energy
$$\rightarrow E_{kin} = \frac{1}{2} m v^2$$

Formula: Thermal Energy \rightarrow $E_{th}=cmT$

$$E_{th} = cmT$$

Formula: E_{kin} vs. dT

$$\rightarrow \qquad dT = \frac{1}{2} \frac{v^2}{c}$$

Temperature equivalent of velocity:

Copper
$$v_{opt}$$
 600 $\frac{m}{s}$

$$\rightarrow$$

$$\rightarrow$$
 $c_{Cu} = 385 \frac{J}{KgK} \rightarrow dT = 385^{\circ}$

$$v_{opt}$$
 575 $\frac{m}{s}$

$$\rightarrow$$

Tantalum
$$v_{opt}$$
 575 $\frac{m}{s}$ \rightarrow $c_{Ta} = 140 \frac{J}{KaK}$ \rightarrow $dT = 1180^{\circ}$

Aluminum
$$v_{opt}$$
 65

$$\rightarrow$$

Aluminum
$$v_{opt}$$
 650 $\frac{m}{s}$ \rightarrow $c_{Al} = 897 \frac{J}{Kg K}$ \rightarrow $dT = 235^{\circ}$

Spraying a line

$$Volume\ spray\ rate\ /Motion\ Speed\ /Spot\ diameter$$
 = line thickness

Typical volume rate \rightarrow 0,6 $\frac{dm^3}{h}$ \rightarrow 10 $\frac{cm^3}{min}$ \rightarrow 166 $\frac{mm^3}{s}$

Typical Motion Speed 200 to 1000 $\frac{mm}{s}$

Spot Diameter 2 to 10 mm

$$200 \frac{mm}{s}$$
 and $166 \frac{mm^3}{s} \rightarrow 138 \ \mu m \xrightarrow{shape \ factor} 27$

Example for 6 mm diameter spray spot:

1000
$$\frac{mm}{s}$$
 and 166 $\frac{mm^3}{s}$ \rightarrow 27.6 $\mu m \xrightarrow{shape factor}$ 55.2 μm

Example for 6 mm diameter spray spot:

$$3000 \frac{mm}{s}$$
 and $166 \frac{mm^3}{s} \rightarrow 9.22 \ \mu m \xrightarrow{shape factor} 18.44 \ \mu m$

Spraying a line 2

Facts

- 1. "Motion Speed" has an effect on the sprayed line
- 2. There is a velocity where the "optimum" is reached
- 3. This velocity can be calculated
- 4. Higher velocities will not change the coating lower will!

Spraying a single pass

 $Volume\ spray\ rate/Area\ velocity = thickness\ of\ single\ pass$

Typical volume rate
$$\rightarrow 0.6 \frac{dm^3}{h} \rightarrow 10 \frac{cm^3}{min} \rightarrow 166 \frac{mm^3}{s}$$

Area Velocity = Motion Speed x Step size

Typical Area Velocity $\rightarrow 1000 \frac{mm}{s} * 1 mm = 1000 \frac{mm^2}{s}$

Example for spraying a single pass:

$$166 \ \frac{mm^3}{s} / 1000 \frac{mm^2}{s} = 166 \mu m$$

Spraying a thick coating

thickness of single pass * number of passes = thickness of coating

Example:

1 mm thick coating on 50 x 50 x 10 mm aluminum sample

Time to spray = volume of coating / volume spray rate (* overspray factor)

$$time_{spray} = 2500mm^3/166\frac{mm^3}{s} * 3 = 45s$$

Energy IMPACT on Sample
$$E_{kin} = 4014 \, Joul$$
 $dT_{sample} = 58^{\circ}$

